EP116 – Dosage of parathormone and postoperative calcium, early and late, in patients subject to radical thyroidectomy, in Solca Guayaquil from November 2014 until November 2016

      Roman, Gustavo1; Criollo, Emilio2; Ullauri, Luis3; Leone, Mario4 1 Solca, surgery resident Guayaquil, Ecuador 2 Solca,  orl surgery resident Guayaquil, Ecuador 3 Solca, surgery resident Guayaquil, Ecuador 4 Solca, surgery  soft tissues chief Guayaquil, Ecuador   Background/ Purpose: Papillary thyroid cancer requires surgery to achieve efficient and effective treatment. Its variable presentation is due to tumor conditions such as size or capsular infiltration. Electrical injuries, involuntary or necessary removal of the parathyroid glands can reveal specific symptoms, such as paresthesias, cramps or semiologic signs, including heart problems as a result of hypocalcemia secondary to hypoparathyroidism. Our goal is to define the patient early with alterations in calcium metabolism, through the study of calcium and parathormone in blood whose post-surgical serials will give a prognostic result of the patient’s calcium metabolism. With this trial we tried to avoid hypocalcemia and to rationalize the calcium dose in patients undergoing radical thyroidectomy with control of the levels of paratohormone, calcium and ionic calcium, within the normal range at 60 days of the intervention are candidates to not receive support from Indefinite calcium. Methodology: Descriptive, observational, prospective study. The study area will include all patients within the skin, thyroid, soft tissue department of the SOLCA – Guayaquil hospital; Undergoing radical thyroidectomy between November 2014 and November 2016. Results: Paratohormone values ??at 60 postoperative days can be used as a reliable indicator to eliminate exogenous calcium mediation. Conclusion: The serial study of calcium and parathormone levels in the immediate and late postoperative period allows us to know the calcium metabolism and to establish who will require exogenous calcium medication indefinitely and who will not. Follow-up is recommended 6 months after surgery to obtain a smaller margin of error   References:
    1. Jessie W, Harrison B. Hypocalcemia after thyroidectomy: the need for improved definitions. World Journal of Endocrine Surgery. 2010; 2(1): p. 17-20.1. Jessie W, Harrison B. Hypocalcemia after thyroidectomy: the need for improved definitions. World Journal of Endocrine Surgery. 2010; 2(1): p. 17-20.
    2. Iqbal M, Subhan A, Baig MS, Shah MS. Frequency of hypocalcaemia in total thyroidectomy. J Surg Pak. 2010; 15: p. 87.
    3. Del Rio L, Castro A, Bernáldez R, Del Palacio A, Giráldez CV, Lecumberri B, et al. Predictive value of the paratohormone in the hypocalcemia postiroidectomía. Acta Otorrinolaringológica Española. 2011; 62 (4): p. 265-273.
    4. Skandalakis JE. Surgical Anatomy. Fourteen ed. Madrid: Marbán; 2013.
    5. kamat MR, kullkarni JN, Desai PB, Duswalla DJ. lingual thyroid: review of 12 cases. Br J Surg. 1979; 66(537).
    6. Lippert H. Clinically oriented antomy for students. 1999th ed. Lippert H, editor. . 2010 reprint.
    7. Testut L, Latarjet A. Treatise on Human Anatomy. Ninth ed. Barcelona: Salvat; 1974.
    8. Sanabria Á CARAÁA. Cervical surgical anatomy of importance in thyroid surgery. Colombian magazine of surgery. 2014 November; (29): p. 50-58.
    9. Cernea CR FAFJMSNSHFea. Identification of the external branch of the superior laryngeal nerve during thyroidectomy. Am J Surg. 1992;(164): p. 634-639.
    10. Kaisha W WASH. Topography of the recurrent laryngeal nerve in relation to the thyroid artery, Zuckerkandl tubercle, and Berry ligament in Kenyans. Clin Anat. 2011;(24): p. 853-857.
    11. Lekacos NL TPSPPSRS. Course of the recurrent laryngeal nerve relative to the inferior thyroid artery and the suspensory ligament of Berry. Int Surg. 1992 octubre – diciembre; 4(77): p. 287-288.
    12. B. Y. Anatomic configurations of the recurrent laryngeal nerve and inferior thyroid artery. surgery. 2006 febrero; 139(2): p. 181-187.
    13. Kandil E ASFPASTRBCea. Motor and sensory branching of the recurrent laryngeal nerve in thyroid surgery. Surgery. 2011 dieciembre; 150(6): p. 1222–1227.
    14. Serpell JW YMGS. The motor fibers of the recurrent laryngeal nerves are located in the anterior extralaryngeal branch. Ann Surg. 2009 abril; 249(4): p. 648-652.
    15. Rojas M, Quijano Y, Luque Bernal RM. Anatomical variations of the recurrent laryngeal nerve in a sample of Colombian population. Journal of the Faculty of Medicine. 2016; 64 (2): p. 207-213.
    16. Ahmed M, Aurangzeb AS, Boota M, Ashfaq M, Rashid AZ, Qureshi MA, et al. Should we routinely expose recurrent laryngeal nerve (s) during thyroid surgery. J Coll Physicians Surg Pak. 2013; 23(3): p. 186-189.
    17. Dionigi G BLRFRSCPDRea. Postoperative laryngoscopy in thyroid surgery: Proper timing to detect recurrent laryngeal nerve injury. Langenbecks Arch Surg. 2010 abril; 395(4): p. 327-331.
    18. Lo CY KKYP. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch Surg. 2000 febrero; 135(2): p. 204-207.
    19. Tubbs RS LMSEOW. Wilhelm Erb and Erb’s point. Clin Anat. 2007 julio; 20(5): p. 486-488.
    20. Farreras-Rozman. Internal medicine: Doyma; 2007.
    21. JA.F. Tresguerres & Co. Human physiology: Mc Graw-Hill.
    22. Guyton & Hall. Treatise on Medical Physiology Spain: Elsevier Saunders; 2011.
    23. Arvan P, Di Jeso B. Thyroglobulin structure, function, and biosynthesis. The Thyroid: Fundamental and Clinical Text. 9th Ed. Braverman LE, Utiger RD (eds.). Philadelphia: Lippincott Williams and Wilkins. 2005;: p. 77.
    24. Graw-Hill JFT&CFh3eEM, 72:890-911. In.
    25. John T. Dunn ADDUoIIMTM2V1N544. .
    26. Sadler TW. Langman’s Medical Embryology. Doceava ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins; 2012.
    27. Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocrine reviews. 2005; 26(1): p. 78-113.
    28. JA.F. Tresguerres & Co. Human physiology. Third ed .: Mc Graw-Hill.
    29. Farreras – Rozman. Internal Medicine. Fourteen ed .: Doyma.
    30. Cipriani E. Calcium metabolism. Medical Journal Herediana. 2013; 1 (2).
    31. Guyton & Hall. Treaty of medical physiology. Eleven ed .: Elsevier Saunders.
    32. González Macías J, Olmos Martinez J. Pathophysiology of osteoporosis and mechanism of action of PTH. Rev Osteoporos Metab Miner. 2010; 2 P. 5-17.
    33. Young P, Bravo MA, Gonzlez MG, Finn BC, Quezel MA, Bruetman JE. Armand Trousseau (1801-1867), his history and the signs of hypocalcemia. Medical Journal of Chile. 2014; 142 (10): p. 1334-1337.
    34. Yeste D, Carrascosa A, Pediatrics AE. Pathology of calcium metabolism. Protoc Diagn Ter Pediatr. 2011; 1 p. 177-192.
    35. REY S. Atlantic International University AIU. [Online].; 2007 [cited 2016 diciembre 22. Available from: https://www.aiu.edu/applications/DocumentLibraryManager/upload/thyroid%20cancer.pdf.
    37. MINISTRY OF HEALTH OF CHILE. Clinical Practice Guide No GES Thyroid nodule and differentiated thyroid cancer. [On-line]. Santiago; 2013 [cited 2016 December 22. Available from: https://web.minsal.cl/sites/default/files/files/GPCTiroides.pdf.
    38. Calvo H, Terradillos S, Sañudo GC. CANCER OF THYROID – SURGICAL TECHNIQUES ON THYROID. In Virtual training book in ENT. Valladolid p. 1 – 22.
    39. American Cancer Asociation. www.cancer.org. [Online].; 2016 [cited 2016 diciembre 22. Available from: https://www.cancer.org/espanol/cancer/cancerdetiroides/guiadetallada/cancer-de-tiroides-what-is-what-is-thyroid-cancer.
    40. ThyCa. ThyCa: Thyroid Cancer Survivor’s Association Inc. [Online].; 2013 [cited 2016 diciembre 22. Available from: www.thyca.org.


Leave a Reply