Postoperative Management of Thyroid Cancer

SEBASTIANO FILETTI

Department of Internal Medicine
Sapienza – University of Rome
Faculty/Presenter Disclosure

• **Faculty:** Sebastiano Filetti

• **Relationships with commercial interests:**
 – Speakers Bureau/Advisory Board: AstraZeneca, Exelixis
Management of DTC: old paradigms

AXIOMS: All patients need
- Total thyroidectomy
- RAI therapy
- L-T4 suppressive therapy
- Life-long surveillance

Mazzaferri E & Kloos R, JCEM, 2001
Management of DTC: Today

Challenges in clinical practice

- Do all patients require total thyroidectomy?
- Do all patients require RAI remnant ablation therapy?
- Do all patients require TSH suppressive therapy?
- Do all patients require life-long surveillance?
Today

New paradigms

We are moving from a population-wide versus individual-based approach

Not all patients are the same

Low risk Intermediate risk High risk
Changing paradigms: why?

1. Changing population we see today

Stage at diagnosis & survival (SEER 2001-2008)

<table>
<thead>
<tr>
<th>Stage at diagnosis</th>
<th>5-year Relative Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrathyroidal</td>
<td>99.8</td>
</tr>
<tr>
<td>Regional metastases</td>
<td>96.8</td>
</tr>
<tr>
<td>Distant metastases</td>
<td>55.4</td>
</tr>
<tr>
<td>Unknown</td>
<td>87.6</td>
</tr>
</tbody>
</table>

- **Intrathyroidal**: 68%
- **Regional metastases**: 25%
- **Distant metastases**: 5%
- **Unknown**: 2%
Changing paradigms: why?

1. Changing population we see today
2. Changing tools
Post-surgery follow-up: **aims**

1. To tailor management strategies to individual risk
2. To identify patients who are disease-free
3. To *early* identify patients with persistent disease
4. To *early* identify patients with recurrent disease
5. To monitor serum TSH levels throughout life

Early follow-up

- 0 months
- 2-3 months

Late follow-up

- 12 months
Post-surgery follow-up: steps

What is the risk of persistent disease?

Do they need ^131I therapy?

Are they disease-free or do they still have persistent disease?

Early follow-up
Definition of the “risk”

How to assess the risk?

1. At diagnosis

- Surgery

- 0 months
- 2-3 months
- 12 months

months
Definition of the “risk”

Assessing the risk: staging systems

- AJCC/UICC
- AGES
- AMES
- EORTC
- MACIS
- OSU
- SKMNC

All these staging systems assess the mortality risk
Definition of the “risk”

Assessing the risk of recurrence: ATA score

Low
- pT1-2
- Nx/N0
- M0
- no aggressive histology

Intermediate
- pT3
- N1
- M0
- aggressive histology

High
- pT4
- M1

Intrathyroidal disease
Loco-regional disease
Metastatic disease

ATA guidelines, 2009
Definition of the “risk”

How to assess the risk?

- Surgery \(\pm I^{131} \)

Why?
- clinical course of the disease
- response to initial therapy and any subsequent treatment

2. Changes in risk category

“Appropriate management requires an ongoing reassessment of the risk... as new data are obtained during follow-up”

ATA guidelines, 2009
Post-surgery follow-up: steps

What is the risk of persistent disease?

Do they need 131I therapy?

Early follow-up

months

0 2-3 12
131I therapy: rationales

<table>
<thead>
<tr>
<th></th>
<th>Target</th>
<th>Goal</th>
<th>Expected benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thyroid remnant ablation</td>
<td>Normal cells</td>
<td>Simplifying subsequent detection of residual/recurrent tumor tissue (DxWBS, Tg measurement)</td>
<td>Early detection of residual/recurrent tumor tissue</td>
</tr>
<tr>
<td>2. Adjuvant therapy</td>
<td>Neoplastic cells</td>
<td>Destruction of occult foci of neoplastic cells (if any)</td>
<td>To improve disease-free survival and overall survival</td>
</tr>
<tr>
<td>3. Therapy</td>
<td>Neoplastic cells</td>
<td>Destrucions of documented residual neoplastic cells</td>
<td>To improve overall survival</td>
</tr>
</tbody>
</table>
Clinical case #1

- **Total thyroidectomy** (multinodular goiter; right lobe growing nodule; neck discomfort)
- **Histology**: left side, papillary thyroid cancer, classic variant, 7 mm
 - pT1a, Nx – Stage I

Does he need 131I ablation/adjuvant therapy?
Micro-PTC (PTMC): recurrences

Metanalysis

What is the reason for this discrepancy?

Size cannot be used as the *only* criterion for determining the risk of recurrence.

Roti E et al., Eur J Endocrinol, 2008
PTMC: size not the only criterion!

Need for risk stratification

- Not family history of thyroid cancer
- No history of head and neck irradiation
- Tumor staging: Nx, N0, M0
- No extension beyond thyroid capsule
- Unifocal
- Not aggressive histologic subtype (e.g., tall cell subtype)
- Not locally invasive (angiolympathic invasion)

Very low risk patients

Durante et al., JCEM, 2010
ETA Consensus, 2006
PTMC: 131I therapy yes or no?

Patients

The majority!

Micro-PTC patients

n=946

- Very Low risk*
 n=710 (75%)

- Low/intermediate/high risk
 n=236 (25%)

Study population

n= 312 (44%)

≥ 5 years of follow-up

* Inclusion criteria

- Not family history of thyroid cancer
- No history of head and neck irradiation
- Tumor staging: $T1 \leq 1cm$, $N0$, $M0$
- No extension beyond thyroid capsule
- Unifocal
- Not aggressive histologic subtype (e.g., tall cell subtype)
- Not locally invasive (angiolympathic invasion)

Durante et al., JCEM, 2010
1. A set of clinical criteria can reliably identify those patients with micro-PTC who are most likely to experience complete cures with **total thyroidectomy**.

2. In these patients at **very low risk** (~75% of all micro-PTC cases), postoperative **131I therapy** is not necessary.
Clinical cases #2 & 3

- 51 yrs
 - Long standing multinodular goiter
 - Total thyroidectomy because of neck discomfort
 - **Histology**: PTC, classic variant, 12 mm
 - **pT1b, Nx** – Stage I
 - **Risk**: low

- 63 yrs
 - Cytologically suspicious thyroid nodule; suspicious lymph nodes
 - Total thyroidectomy + central neck dissection
 - **Histology**: PTC, follicular variant, 18 mm, minimal extrathyroidal extension, 2 out of 21 metastatic lymph nodes
 - **pT3, N1a** – Stage III
 - **Risk**: intermediate

Do they need \(^{131}\text{I} \text{ablation/adjuvant therapy?}**
131I therapy: yes or no?

Conflicting data

Favour
3. Samaan NA et al., JCEM 1992
6. Jonklaas J et al., Thyroid 2006

Against
5. Sugitani I & Fujimoto Y, Endocr J 1999
Conflicting data

Accurate risk assessment appears to be the key to identifying DTC patients who are likely to benefit from postoperative radioiodine
131I therapy: yes or no?

Need to estimate the risk of residual disease

Low risk

131I NO
n=290

131I YES
n=495

Follow-up:
6 yrs (2.5-25)

Disease 1 (0.4%)

Disease 0

Patients

- Tumor staging: T1-T2, Nx/N0, M0
- Not aggressive hystologic subtype (e.g., tall cell subtype)
- Not locally invasive (angiolympathic invasion)

Durante et al., JCEM, 2012
131I therapy: yes or no?

Need to estimate the risk of residual disease

Low/Intermediate risk

131I NO
n=120

Follow-up: 5 yrs (0.5-34)

Disease 5 (4.1%)

Patients

- T1b-T3 (<4 cm)
- Nx/N0/N1 (minimal lymph node involvement)
- Post-surgery, not stimulated Tg <10 ng/ml (negative TgAb)

Vaisman et al., Clin Endocrinol, 2011
Need for prospective randomized studies

A prospective randomized trial in low to intermediate risk thyroid cancer patients is now underway in Europe

PTC
Non aggressive histological features
pT1b, pT2, pT3, intrathyroidal only
pNX, N0, N1a

FTC/ Hürthle cell cancer
Minimally invasive
pT1b, pT2, intrathyroidal

This strategy shift is reflected in the 2009 ATA guidelines, which recommend tailoring case management to individual risk levels.
131I therapy: yes or no?

The 2009 ATA guidelines recommendations

<table>
<thead>
<tr>
<th>131I NO</th>
<th>“Grey zone”</th>
<th>131I YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (≤1 cm)</td>
<td>T1 (1-2 cm)</td>
<td>T3 (>4 cm)</td>
</tr>
<tr>
<td>N0/Nx</td>
<td>T2</td>
<td>T4</td>
</tr>
<tr>
<td>Recommendation E</td>
<td>Recommendation I</td>
<td>Recommendation B</td>
</tr>
<tr>
<td>Recommendation I</td>
<td>Recommendation C</td>
<td>Recommendation B</td>
</tr>
<tr>
<td></td>
<td>T3 (extrathyroidal)</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>Recommendation I</td>
<td>Recommendation A</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommendation C</td>
<td></td>
</tr>
</tbody>
</table>

Low risk

Low-Intermediate risk

Intermediate-High risk
Clinical cases

- **Histology:** PTC, classic variant, 12 mm (pT1b, Nx) – Stage I
 - 51 yrs

- **Histology:** PTC, follicular variant, 18 mm, extrathyroidal extension, 2 out of 21 metastatic lymph nodes (pT3, N1a) – Stage III
 - 63 yrs

Early follow-up

- ✓ Risk: LOW
- ✓ ¹³¹I: NO

- ✓ Risk: INTERMEDIATE
- ✓ ¹³¹I: YES

What dose?

How prepare the patient?
The 2009 ATA guidelines recommendations

“If post-operative 131I is used, the ATA guidelines advise using the *lowest activity* needed to ensure successful remnant ablation”

What is the lowest 131I activity for remnant ablation?

R36 – Recommendation B (ATA guidelines, 2009)
Randomized clinical trials: ESTIMABL, HiLo

131I remnant ablation

DTC patients
Total thyroidectomy

- rhTSH plus thyroid hormone therapy
 - 30 mCi (1.1 GBq)
 - 100 mCi (3.7 GBq)

- Withdrawal
 - 30 mCi (1.1 GBq)
 - 100 mCi (3.7 GBq)

ESTIMABL: Schlumberger M et al., NEJM, 2012
HiLo: Mallick U et al., NEJM, 2012
Successful remnant ablation

ESTIMABL

- 30 mCi rhTSH: 90%
- 100 mCi Withdrawal: 93%

HiLo

- 30 mCi rhTSH: 84%
- 100 mCi Withdrawal: 87%

ESTIMABL: Schlumberger M et al., *NEJM*, 2012

HiLo: Mallick U et al., *NEJM*, 2012
If residual microscopic disease is suspected or documented, or if there is a more aggressive tumor histology (e.g., tall cell, insular, columnar cell carcinoma), then higher activities (100–200 mCi) may be appropriate.
Clinical case #4

- Follicular thyroid carcinoma (pT2, N0, M1 – Stage IVc – Risk: High)
- RxWBS (3.7 GBq): RAI avid pulmonary and mediastinal lesions
- 18-FDG uptake at PET scan

Benefit from 131I therapy?
131I therapy: yes or no?

131 treatment

Survival & 131I avidity

Group 1:
- 131I-avid lesions
- remission

Group 2:
- no/low 131I uptake
- persistent disease

Group 3:
- 131I-avid lesions
- persistent disease

Survival after metastasis discovery

Durante C, JCEM, 2006
131I therapy: yes or no?

18-FDG-PET scan: estimating RAI response

Survival at 60 months

- RAI + FDG - 95%
- RAI + FDG + 45%
- RAI - FDG + 45%

RAI: radioactive iodine
FDG: [18F]fluoro-2-deoxy-D-glucose

Robbins et al. J JCEM 2006
131I therapy: yes or no?

RAI refractory disease

1. Index lesion that did not take up 131I on a RAI scan
2. RAI-avid index lesion that did not respond to therapeutic RAI treatment
3. 18F-Fluoro-deoxy glucose avid PET lesions
What is the risk of persistent disease?

Do they need ^{131}I therapy?

Are they disease-free or they still have persistent disease?

Early follow-up
After total or near total thyroidectomy with or without thyroid remnant ablation, disease free comprises ALL of the following:

- No disease clinical evidence
- No tumor's imaging evidence
- Serum Thyroglobulin undetectable during TSH suppression and stimulation
- No anti-thyroglobulin antibodies

ETA Consensus, 2006
ATA guidelines, 2009
The tools of follow up

First line

Neck US

Tg ± rhTSH

Second line

Other imaging modalities

ETA Consensus, 2006
ATA guidelines, 2009
Neck US: why?

Stage at diagnosis

- Persistent or recurrent disease is almost always associated with spread to the cervical lymph nodes
- It usually precedes distant metastasis

Intrathyroidal
- **Regional metastases**
- **Distant metastases**
- **Unknown**

SEER summary stage 2000-2007
Neck US: specificity

High specificity

- Cystic change
 Specificity 100%

- Calcifications
 Specificity 100%

Low specificity

- Loss of the fatty hilus
 Specificity 29%

- Rounded shape
 Specificity 64%

- Peripheral vascularity
 Specificity 82%

Leboulleux S, JCEM, 2009
Sensitivity (%)

NeckUS (± FNAB) has a higher sensitivity when compared to stimulated Tg determination in detecting locoregional disease

Pacini F et al., JCEM, 2003
Torlontano M et al., JCEM, 2004
The 2009 ATA guidelines recommendations

Neck US

- Following surgery, cervical US to evaluate the thyroid bed and central and lateral cervical nodal compartments should be performed at 6–12 months and then periodically

R48 - Recommendation rating: B

DxWBS

- Low-risk patients with an undetectable Tg on thyroid hormone and a negative US do not require routine DxWBS during follow-up
- It may be of value in the follow-up of patients with high or intermediate risk of persistent disease

R46-47 - Recommendation rating: F-C
The tools of follow up

First line

- Neck US
- Tg ± rhTSH

Second line

- Other imaging modalities

ETA Consensus, 2006
ATA guidelines, 2009
Thyroglobulin (Tg)

No 131I therapy:

may I use serum Tg measurement during the follow-up?

Basal Tg

131I -

131I +

Tg after rhTSH
Tg “natural history”

Not ablated patients

1. 60% of pts had already undetectable Tg values at the 1st post-operative evaluation (about 12 months)

2. In the remaining 40%, Tg values remained stable or declined spontaneously over time

Durante C et al., JCEM, 2012
Tg trend & outcome

Pts in remission (77/78) Pts with recurrence (1/78)

Serum Tg (ng/mL)

Mean values

Years

0 0.1 0.2 0.3 0.4 0.5

1 2 3 4 5 6 7

Treatment

Suspicious lymph node at neck US

Durante C et al., JCEM, 2012
Thyroglobulin (Tg)
How to manage rhTSH-Tg?

12 months after rhTSH

- Tg < 1 ng/ml
- Tg 1-10 ng/ml
- Tg > 10 ng/ml

Negative results
High NPV (~99%)

Positive results
Low PPV (20-50%)

The main contribution of rhTSH-Tg is to identify patients who are cured (the majority!!)

Torlontano M et al., JCEM, 2004; Brassard M et al., JCEM, 2011
How to manage rhTSH-Tg?

12 months Tg after rhTSH

Tg <1 ng/ml
- No other abnormalities
Long term follow-up

Tg 1-10 ng/ml
- No other abnormalities
Monitor Tg

Tg >10 ng/ml
- And/or other abnormalities
Staging ± therapy

decreasing values rising values

PPV=100%

Adapted from: ETA consensus, 2006; ATA guidelines, 2009

Baudin E et al., JCEM, 2003
Torlontano M et al., JCEM, 2004
Highly sensitive Tg: cut-off?

Optimal cut-off (according to ROC curves)

Basal Tg = 0.2–0.3 ng/ml
- Sensitivity: 65%
- Specificity: 85-87%

rhTSH-Tg = 1 ng/ml
- Sensitivity: 73-76%
- Specificity: 88-89%

How to improve sensitivity & specificity?

1. By combining highly sensitive Tg with neck ultrasound (Castagna et al., J Endocrinol Invest, 2011)

2. By observing the trend of serial serum Tg determinations (Durante C et al., JCEM, 2012)

Schlumberger M et al, JCEM, 2007
The tools of follow up

First line

- Neck US
- Tg ± rhTSH

Second line

- Other imaging modalities

ETA Consensus, 2006
ATA guidelines, 2009
Other imaging modalities

Assessment of disease extent

- Mediastinum, lung
 - CT
- Liver
 - US
 - MRI or CT dual-phase
- Bone
 - Bone scintigraphy, MRI
- Brain
 - CT or MRI

Giraudet et al, JCEM, 2007
Tg(+) & imaging(-) patients?

The 2009 ATA guidelines recommendations

“Empiric radioactive iodine therapy (100–200 mCi) might be considered in patients with elevated or rising serum Tg levels in whom imaging has failed to reveal a potential tumor source”

What is the sensitivity of RxWBS in detecting disease in these patients?

What about 18FDG PET/CT?

R75 – Recommendation C (ATA guidelines, 2009)
Tg(+) & imaging(-) patients?

RxWBS Vs 18FDG PET/CT 131I-WBS 124I-PET

Lebouleux S et al., *Thyroid*, 2012

Van Nostrand D et al., *Thyroid*, 2010
Conclusions

• We have diagnostic tools able to effectively distinguishing patients with negligible risks for persistent/recurrent disease from those with higher-risk tumors

• We are moving toward increasingly individualized, risk-tailored diagnostic/therapeutic protocols
Acknowledgements

Cosimo Durante
Giuseppe Ronga
Teresa Montesano
Alessandra Paciaroni

Antonella Verrienti
Marialuisa Sponziello
Mariavittoria Dima
Francesca Rosignolo
Valeria Pecce

Udine
Verona
Bologna
Perugia
SGR

Torino
Orlandi
Pisa
Monzani
Salerno
Monzani

Roma

Palermo
Catanzaro
Catania

Udine
Verona
Bologna
Perugia
SGR

Torino
Orlandi
Pisa
Monzani
Salerno
Monzani

Roma

Palermo
Catanzaro
Catania

Udine
Verona
Bologna
Perugia
SGR

Torino
Orlandi
Pisa
Monzani
Salerno
Monzani

Roma

Palermo
Catanzaro
Catania

Udine
Verona
Bologna
Perugia
SGR

Torino
Orlandi
Pisa
Monzani
Salerno
Monzani

Roma

Palermo
Catanzaro
Catania
Tribute to Ernie Mazzaferri

Ernie in Rome